论文标题

在暴民中,高临界场超导性通过NB替换在P6/mmm结构中稳定在环境压力下

High critical field superconductivity at ambient pressure in MoB$_2$ stabilized in the P6/mmm structure via Nb substitution

论文作者

Hire, A. C., Sinha, S., Lim, J., Kim, J. S., Dee, P. M., Fanfarillo, L., Hamlin, J. J., Hennig, R. G., Hirschfeld, P. J., Stewart, G. R.

论文摘要

最近发现,在高高的压力下,暴民$ _2 $在临界温度($ t_c $)上表现出超导性,高达32 k。超导性在从环境压力r $ $ $ $ \ bar {3} $结构到mgb $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 p6/mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm的结构均得到压力很高。这表明,二迪伯利德中的$ t_c $值非常高,不仅限于MGB $ _2 $,因此,如果可以将它们胁迫到MGB $ _2 $结构中,则其他二吡啶可能会发生类似的高$ T_C $值。在本文中,我们表明密度功能理论计算表明,声子自由能在r $ \ bar {3} $ m上稳定P6/mmm结构,而NB $ _ {1-x} $ _x $ $ _x $ _x $ _x $ _b $ b $ _2 $系列。 X射线衍射证实了合成的NB取代的MOB $ _2 $采用MGB $ _2 $ Crystal结构。高磁场电阻率测量和特定的热量测量表明,nb $ _ {1-x} $ mo $ $ _x $ b $ _2 $以$ t_c $高达8 K的超导性表现出超导性,而接近6 t的关键领域。

Recently it was discovered that, under elevated pressures, MoB$_2$ exhibits superconductivity at a critical temperature, $T_c$, as high as 32 K. The superconductivity appears to develop following a pressure-induced structural transition from the ambient pressure R$\bar{3}$m structure to an MgB$_2$-like P6/mmm structure. This suggests that remarkably high $T_c$ values among diborides are not restricted to MgB$_2$ as previously appeared to be the case, and that similarly high $T_c$ values may occur in other diborides if they can be coerced into the MgB$_2$ structure. In this paper, we show that density functional theory calculations indicate that phonon free energy stabilizes the P6/mmm structure over the R$\bar{3}$m at high temperatures across the Nb$_{1-x}$Mo$_x$B$_2$ series. X-ray diffraction confirms that the synthesized Nb-substituted MoB$_2$ adopts the MgB$_2$ crystal structure. High magnetic field electrical resistivity measurements and specific heat measurements demonstrate that Nb$_{1-x}$Mo$_x$B$_2$ exhibits superconductivity with $T_c$ as high as 8 K and critical fields approaching 6 T.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源