论文标题
一种基于学习的最佳不确定性量化方法及其在弹道影响问题上的应用
A Learning-Based Optimal Uncertainty Quantification Method and Its Application to Ballistic Impact Problems
论文作者
论文摘要
本文涉及对输入(或先验)概率度量仅部分/不完整的系统(例如,只有统计矩和/或粗糙拓扑)而不是完全指定的系统的最佳(至上和幼稚)不确定性界限的研究。这样的部分知识对输入概率度量的限制提供了限制。最佳不确定性量化的理论使我们能够将任务转换为约束优化问题,其中人们试图通过找到输入的最大概率度量来计算系统输出不确定性的最低/最大下限。这种优化需要对系统的性能指标进行重复评估(对性能图的输入),并且本质上是高维和非凸的。因此,在实践中很难找到最佳的不确定性范围。在本文中,我们研究了机器学习的使用,尤其是深层神经网络,以应对挑战。我们通过引入神经网络分类器来实现这一目标,以近似性能指标与随机梯度下降方法相结合以解决优化问题。我们证明了基于学习的框架,这些框架是对镁合金的影响的不确定性量化,这些镁合金是有希望的轻质结构和保护材料。最后,我们证明该方法可用于为工程实践中的性能证书和安全设计构建地图。
This paper concerns the study of optimal (supremum and infimum) uncertainty bounds for systems where the input (or prior) probability measure is only partially/imperfectly known (e.g., with only statistical moments and/or on a coarse topology) rather than fully specified. Such partial knowledge provides constraints on the input probability measures. The theory of Optimal Uncertainty Quantification allows us to convert the task into a constraint optimization problem where one seeks to compute the least upper/greatest lower bound of the system's output uncertainties by finding the extremal probability measure of the input. Such optimization requires repeated evaluation of the system's performance indicator (input to performance map) and is high-dimensional and non-convex by nature. Therefore, it is difficult to find the optimal uncertainty bounds in practice. In this paper, we examine the use of machine learning, especially deep neural networks, to address the challenge. We achieve this by introducing a neural network classifier to approximate the performance indicator combined with the stochastic gradient descent method to solve the optimization problem. We demonstrate the learning based framework on the uncertainty quantification of the impact of magnesium alloys, which are promising light-weight structural and protective materials. Finally, we show that the approach can be used to construct maps for the performance certificate and safety design in engineering practice.