论文标题
学位的第二瞬间三$ l $ functions
Second moment of degree three $L$-functions
论文作者
论文摘要
令$ f $为$ \ mathrm {sl}(3,\ mathbb {z})$的Hecke-Maaßcusp表单。我们获得了$ l(f,s)$ in $ t $ - actect的第二个时刻的第一个非平凡的上限: $ \ int_ {t}^{2t} | l(f,1/2+it)|^2 dt \ ll_ {f,\ varepsilon} t^{3/2-3/2-3/32+\ varepsilon} $$ 即时的定义包括在$ t $ -ASCEED的$ dual $ \ mathrm {gl}(3)$ t $ -ASECTION的限制的子概念上的改进,以及自dual $ \ mathrm {gl}(gl}(3)\ times \ times \ mathrm {gl} $ l $ l $ l $ - $ l $ - 方面,Rankin-Selberg问题中的错误术语,以及$ \ Mathrm {gl}(3)$ $ L $ functions的零密度估计。
Let $F$ be a Hecke-Maaß cusp form for $\mathrm{SL}(3,\mathbb{Z})$. We obtain the first non-trivial upper bound of the second moment of $L(F,s)$ in $t$-aspect: $$\int_{T}^{2T}|L(F,1/2+it)|^2 dt\ll_{F,\varepsilon} T^{3/2-3/32+\varepsilon}.$$ Immediate corollaries include improvements over the existing results on the subconvexity bound for self-dual $\mathrm{GL}(3)$ $L$-functions in the $t$-aspect and for self-dual $\mathrm{GL}(3)\times \mathrm{GL}(2)$ $L$-functions in the $\mathrm{GL}(2)$ spectral aspect, the error term in the Rankin-Selberg problem, and the zero density estimate for $\mathrm{GL}(3)$ $L$-functions.