论文标题

系统集成信息

System Integrated Information

论文作者

Marshall, William, Grasso, Matteo, Mayner, William GP, Zaeemzadeh, Alireza, Barbosa, Leonardo S, Chastain, Erick, Findlay, Graham, Sasai, Shuntaro, Albantakis, Larissa, Tononi, Giulio

论文摘要

综合信息理论(IIT)始于意识本身,并确定每种可能的经验都是正确的一组属性(公理)。公理被翻译成一组有关意识基础(称为复杂)的假设,然后将其用于制定数学框架,以评估经验的质量和数量。 IIT提出的解释性身份是,经验与从最大不可约的基材($φ$ - 结构)中展开的原因效应结构相同。在这项工作中,我们介绍了基于IIT的存在,内在性,信息和集成的系统($φ_S$)的集成信息($φ_S$)的定义。我们探讨了连通性影响系统中的确定性,退化和断层线的概念。然后,我们演示了提出的度量如何将复合物识别为$φ_s$大于任何重叠候选系统的$φ_s$的系统。

Integrated information theory (IIT) starts from consciousness itself and identifies a set of properties (axioms) that are true of every conceivable experience. The axioms are translated into a set of postulates about the substrate of consciousness (called a complex), which are then used to formulate a mathematical framework for assessing both the quality and quantity of experience. The explanatory identity proposed by IIT is that an experience is identical to the cause-effect structure unfolded from a maximally irreducible substrate (a $Φ$-structure). In this work we introduce a definition for the integrated information of a system ($φ_s$) that is based on the existence, intrinsicality, information, and integration postulates of IIT. We explore how notions of determinism, degeneracy, and fault lines in the connectivity impact system integrated information. We then demonstrate how the proposed measure identifies complexes as systems whose $φ_s$ is greater than the $φ_s$ of any overlapping candidate systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源