论文标题

通过循环洗牌代数的循环洗牌兼容

Cyclic shuffle-compatibility via cyclic shuffle algebras

论文作者

Liang, Jinting, Sagan, Bruce E., Zhuang, Yan

论文摘要

如果在两个不连接排列$π$和$σ$的混音中分布$ \ perpotatorname {st} $,则置换统计统计$ \ operatorName {st} $是兼容的,如果$ \ operatorname {st} $的分布仅取决于$π$和$σ$仅取决于$ \ operatornAme {s st} $,$, $σ$。斯坦利(Stanley)在$ p $ - 分区的早期工作中隐含了兼容性,并首先是由盖塞尔(Gessel)和张(Gessel and Zhuang)明确研究的,格塞尔(Gessel)和张(Zhuang)开发了一个代数框架,以围绕其围绕他们的混乱代数的概念,该框架兼容了,以混乱的代数为中心。对于一个称为血统统计的统计家庭,这些洗牌代数与准对称函数代数的商的同构相同。 最近,Domagalski,Liang,Minnich,Sagan,Schmidt和Sietsema定义了用于循环排列的统计数据的兼容性,并通过纯粹的组合手段研究了环状洗牌兼容。在本文中,我们定义了与兼容兼容统计量的循环洗牌代数,并开发了一个代数框架,以循环兼容性兼容性,其中准对象功能的作用被最近引入的环形准对象函数替换为ADIN,GESSEL,GESSEL,REANER,REANER,REANER,和ROICHMAR,REACHMAN和ROICHMAN和ROICHMAR,REACHMAN和ROICHMAN。我们使用我们的理论为各种环状置换统计的循环洗牌代数提供明确的描述,这反过来又为它们的循环散装兼容提供了代数证明。

A permutation statistic $\operatorname{st}$ is said to be shuffle-compatible if the distribution of $\operatorname{st}$ over the set of shuffles of two disjoint permutations $π$ and $σ$ depends only on $\operatorname{st}π$, $\operatorname{st}σ$, and the lengths of $π$ and $σ$. Shuffle-compatibility is implicit in Stanley's early work on $P$-partitions, and was first explicitly studied by Gessel and Zhuang, who developed an algebraic framework for shuffle-compatibility centered around their notion of the shuffle algebra of a shuffle-compatible statistic. For a family of statistics called descent statistics, these shuffle algebras are isomorphic to quotients of the algebra of quasisymmetric functions. Recently, Domagalski, Liang, Minnich, Sagan, Schmidt, and Sietsema defined a version of shuffle-compatibility for statistics on cyclic permutations, and studied cyclic shuffle-compatibility through purely combinatorial means. In this paper, we define the cyclic shuffle algebra of a cyclic shuffle-compatible statistic, and develop an algebraic framework for cyclic shuffle-compatibility in which the role of quasisymmetric functions is replaced by the cyclic quasisymmetric functions recently introduced by Adin, Gessel, Reiner, and Roichman. We use our theory to provide explicit descriptions for the cyclic shuffle algebras of various cyclic permutation statistics, which in turn gives algebraic proofs for their cyclic shuffle-compatibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源