论文标题

意见动态模型中相互作用内核的推断

Inference of interaction kernels in mean-field models of opinion dynamics

论文作者

Chu, Weiqi, Li, Qin, Porter, Mason A.

论文摘要

在意见动力学模型中,许多参数(以常数的形式或功能形式形式)在描述,校准和预测观点如何随时间变化而发挥着关键作用。在检查意见动力学模型时,使用经验数据推断其参数是有益的。在本文中,我们研究了这样一个推理问题的示例。我们考虑一个平均场界限模型,该模型在个体之间具有未知的相互作用内核。这种互动内核编码具有不同意见的个人如何相互作用和影响彼此的观点。由于通常很难从观察或实验中定量地衡量观点作为经验数据,因此我们假设可用的数据采用了对意见的累积分布函数的部分观察形式。我们证明,某些测量值确保了相互作用内核的精确而独特的推断,并提出了一种数值方法,可以从有限数量的数据点重建相互作用内核。我们的数值结果表明,随着我们从策略性扩大数据集,推断相互作用内核的误差呈指数衰减。

In models of opinion dynamics, many parameters -- either in the form of constants or in the form of functions -- play a critical role in describing, calibrating, and forecasting how opinions change with time. When examining a model of opinion dynamics, it is beneficial to infer its parameters using empirical data. In this paper, we study an example of such an inference problem. We consider a mean-field bounded-confidence model with an unknown interaction kernel between individuals. This interaction kernel encodes how individuals with different opinions interact and affect each other's opinions. Because it is often difficult to quantitatively measure opinions as empirical data from observations or experiments, we assume that the available data takes the form of partial observations of a cumulative distribution function of opinions. We prove that certain measurements guarantee a precise and unique inference of the interaction kernel and propose a numerical method to reconstruct an interaction kernel from a limited number of data points. Our numerical results suggest that the error of the inferred interaction kernel decays exponentially as we strategically enlarge the data set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源