论文标题

简单代数群体表示的理性元素,i

Rational elements in representations of simple algebraic groups, I

论文作者

Zalesski, Alexandre

论文摘要

如果$ g $共轭到$ g^i $,则有限的订单元素$ g $称为理性,每个整数$ i $ $ $ $ $ $ $我们确定所有三倍$(g,g,ϕ)$,其中$ g $是一个简单的代数$ a_n,b_n $或$ c_n $,在代数封闭的特征性$ p \ geq 0 $,$ g $的代数封闭字段中1。

A finite order element $g$ of a group $G$ is called rational if $g$ is conjugate to $g^i$ for every integer $i$ coprime to the order $g$. We determine all triples $(G,g,ϕ)$, where $G$ is a simple algebraic group of type $A_n,B_n$ or $C_n$ over an algebraically closed field of characteristic $p\geq 0$, $g\in G$ is a rational odd order semisimple element and $ϕ$ is an irreducible representation of $G$ such that $ϕ(g)$ has eigenvalue 1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源