论文标题

在连接车辆中识别和验证攻击树威胁模型

Identification and Verification of Attack-Tree Threat Models in Connected Vehicles

论文作者

Ebrahimi, Masoud, Striessnig, Christoph, Triginer, Joaquim Castella, Schmittner, Christoph

论文摘要

由于网络物理组件在汽车行业不断增加的应用,网络安全已成为一个紧迫的话题。在连接车辆中的以太网和WiFi等适应技术和通信协议会产生许多攻击场景。因此,ISO/SAE 21434和UN R155(2021)定义了汽车网络安全的标准和监管框架。这两个文档都遵循基于风险管理的方法,并需要一种威胁建模方法来进行风险分析和识别。这种威胁建模方法必须符合ISO/SAE 21434的威胁分析和风险评估(TARA)框架。相反,现有的威胁建模方法列举了孤立的威胁,无视车辆的设计和连接。因此,他们忽略了从车辆界面到其资产的攻击路径的作用。换句话说,他们缺少塔拉(Tara)工作产品,例如攻击路径损害资产或可行性和影响评级。我们提出了一种威胁建模方法,通过识别,测序和将漏洞从有效的攻击表面与资产联系起来来构建攻击路径。最初,我们将网络安全指南转换为攻击树木,然后使用他们的正式解释来评估车辆的设计。该工作流程产生攻击路径的组成结构以及所需的Tara工作产品(例如攻击路径,可行性和影响)。更重要的是,我们可以在连接的车辆的背景下迭代地应用工作流程,以确保设计合规,隐私和网络安全。最后,为了展示汽车行业中先发制人威胁识别和风险分析的复杂性和重要性,我们在连接的车辆测试平台蜘蛛中评估了基于模型的方法。

As a result of the ever-increasing application of cyber-physical components in the automotive industry, cybersecurity has become an urgent topic. Adapting technologies and communication protocols like Ethernet and WiFi in connected vehicles yields many attack scenarios. Consequently, ISO/SAE 21434 and UN R155 (2021) define a standard and regulatory framework for automotive cybersecurity. Both documents follow a risk management-based approach and require a threat modeling methodology for risk analysis and identification. Such a threat modeling methodology must conform to the Threat Analysis and Risk Assessment (TARA) framework of ISO/SAE 21434. Conversely, existing threat modeling methods enumerate isolated threats disregarding the vehicle's design and connections. Consequently, they neglect the role of attack paths from a vehicle's interfaces to its assets. In other words, they are missing the TARA work products, e.g., attack paths compromising assets or feasibility and impact ratings. We propose a threat modeling methodology to construct attack paths by identifying, sequencing, and connecting vulnerabilities from a valid attack surface to an asset. Initially, we transform cybersecurity guidelines to attack trees, and then we use their formal interpretations to assess the vehicle's design. This workflow yields compositional construction of attack paths along with the required TARA work products (e.g., attack paths, feasibility, and impact). More importantly, we can apply the workflow iteratively in the context of connected vehicles to ensure design conformity, privacy, and cybersecurity. Finally, to show the complexity and the importance of preemptive threat identification and risk analysis in the automotive industry, we evaluate the presented model-based approach in a connected vehicle testing platform, SPIDER.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源