论文标题
$ s $ - 和$ p $ - 充满迷人的Tetraquark州及其径向激发
The $S$- and $P$-wave fully charmed tetraquark states and their radial excitations
论文作者
论文摘要
受到LHCB,CMS和ATLAS协作对完全迷人的Tetraquark国家的观察进展的启发,我们对基础状态进行了系统的研究以及$ S $ - 和$ s $ - 和$ p $ -Wave $ -Wave $ \ \ \ Mathrm {cc} {cc} \ bar {cc} \ mathrm {cc} c} $ {cc} $ {它们的质谱是均方根(R.M.S。)半径和径向密度分布,使用相对夸克模型研究。该计算表明,全面的Tetraquark州没有稳定的约束状态,R.M.S.这些四夸克状态的半径小于1 fm。我们的结果支持分配X(6600)结构,$ M_ {X(6600)} = 6552 \ PM10 \ PM12 $ MEV,是$ 0^{++} $(1 $ S $)和$ 2^{++} $(1 $ S $)的$ 0^{++} $(1 $ S $)或其混合物。另一个由CMS协作称为X(6600)的结构,$ M_ {x(6600)} = 6.62 \ pm0.03^^{+0.02} _ { - 0.01} $ GEV,可能来自具有$ j^{pc} $ j^{pc} $ = $ = $ 0^$ = $ 0^{ - +} $ 1 $ p $ State的最低1 $ p $ state $ 2^{ - +} $。 x(6900)的可能作业包括$ 0^{++} $(2 $ s $),$ 2^{++} $(2 $ s $)态和最高的1 $ p $状态,带有$ j^{pc} = 0^{ - +} $。至于X(7200),它可以被解释为具有$ J^{pc} = 0^{ - +} $,$ 1^{ - +} $的最高2 $ p $状态之一,而$ 2^{ - +} $,而3 $ s $状态不能完全排除在候选人之外。
Inspired by recent progresses in observations of the fully charmed tetraquark states by LHCb, CMS, and ATLAS Collaborations, we perform a systematic study of the ground states and the first radial excitations of the $S$- and $P$-wave $\mathrm{cc}\bar{\mathrm{c}}\bar{\mathrm{c}}$ system. Their mass spectra, root mean square(r.m.s.) radii and radial density distributions are studied with the relativized quark model. The calculations show that there is no stable bound states for the full-charmed tetraquark states, and the r.m.s. radii of these tetraquark states are smaller than 1 fm. Our results support assigning X(6600) structure, $M_{X(6600)}=6552\pm10\pm12$ MeV, as one of the $0^{++}$(1$S$) and $2^{++}$(1$S$) states or their mixtures. Another structure also named as X(6600) by CMS Collaboration, $M_{X(6600)}=6.62\pm0.03^{+0.02}_{-0.01}$ GeV, may arise from the lowest 1$P$ states with $J^{PC}$=$0^{-+}$, $1^{-+}$, and $2^{-+}$. The possible assignments for X(6900) include the $0^{++}$(2$S$), $2^{++}$(2$S$) states, and the highest 1$P$ state with $J^{PC}=0^{-+}$. As for X(7200), it can be interpreted as one of the highest 2$P$ states with $J^{PC}=0^{-+}$, $1^{-+}$, and $2^{-+}$, and the 3$S$ states can not be completely excluded from the candidates.