论文标题

振荡积分的差异集的尺寸与凹面相

Dimension of divergence sets of oscillatory integrals with concave phase

论文作者

Cho, Chu-hee, Shiraki, Shobu

论文摘要

我们研究了集合的Hausdorff尺寸,当$ M \ in(0,1)$在一个空间尺寸中,解决方案与分数schrödinger方程$ e^{it(-Δ)^\ frac m2} f $失败。还考虑了沿着非区域曲线和一组线路的点收敛,我们发现当$ m \ in(1,\ infty)$中的情况不同。

We study the Hausdorff dimension of the sets on which the pointwise convergence of the solutions to the fractional Schrödinger equation $e^{it(-Δ)^\frac m2}f$ fails when $m\in(0,1)$ in one spatial dimension. The pointwise convergence along a non-tangential curve and a set of lines are also considered, where we find different nature from the case when $m\in(1,\infty)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源