论文标题

通用$ n $ - 局部不平等现象,用于任意输入方案及其量子违规的线性链网络中的不平等现象

Generalized $n$-locality inequalities in linear-chain network for arbitrary inputs scenario and their quantum violations

论文作者

Kumar, Rahul, Pan, A. K.

论文摘要

网络中的多部分非局部性在概念上与标准的多方钟非局部性不同。最近,已经研究了各种拓扑的网络非局部性。我们考虑了网络的线性链拓扑,并演示了量子非局部性(非$ n $ locality)。这样的网络场景涉及$ n $数量的独立资源和$ n+1美元的聚会,两个边缘派对(爱丽丝和查理)和$ n-1 $中央派对(鲍勃)。通常认为每个方仅收到两个输入。在这项工作中,我们考虑了一个广义的方案,在该方案中,边缘各方将收到任意$ n $的输入数(等于许多独立来源),并且每个中央各方都会收到两个输入。我们为任意$ n $的线性链网络提供了一个普遍的$ n $ loclocality不平等现象,并证明了对不平等的最佳量子违反。我们介绍了一种优雅的方案方法,实现了最佳量子违反上述不平等现象\ emph {而无需假设系统尺寸的最佳量子。我们表明,最佳量子违规要求边缘各方的可观察到相互抗击。对于$ n = 2 $和$ 3 $,当每个边缘政党与中央各方共享两倍的纠结状态时,可以获得最佳量子违规。我们进一步争辩说,对于$ n \ geq 2 $,单个符号状态的单个副本可能不足以表现出违反$ n $ locality不平等的违规行为,但其多个副本可以激活量子违规。

Multipartite nonlocality in a network is conceptually different from standard multipartite Bell nonlocality. In recent times, network nonlocality has been studied for various topologies. We consider a linear-chain topology of the network and demonstrate the quantum nonlocality (the non-$n$-locality). Such a network scenario involves $n$ number of independent sources and $n+1$ parties, two edge parties (Alice and Charlie), and $n-1$ central parties (Bobs). It is commonly assumed that each party receives only two inputs. In this work, we consider a generalized scenario where the edge parties receive an arbitrary $n$ number of inputs (equals to a number of independent sources), and each of the central parties receives two inputs. We derive a family of generalized $n$-locality inequalities for a linear-chain network for arbitrary $n$ and demonstrate the optimal quantum violation of the inequalities. We introduce an elegant sum-of-squares approach enabling the derivation of the optimal quantum violation of aforesaid inequalities \emph{without} assuming the dimension of the system. We show that the optimal quantum violation requires the observables of edge parties to mutually anticommuting. For $n=2$ and $3$, the optimal quantum violation can be obtained when each edge party shares a two-qubit entangled state with central parties. We further argue that for $n\geq 2$, a single copy of a two-qubit-entangled state may not be enough to exhibit the violation of $n$-locality inequality, but multiple copies of it can activate the quantum violation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源