论文标题
轴向T2W前列腺MRI中的3D蒙版建模进步病变分类
3D Masked Modelling Advances Lesion Classification in Axial T2w Prostate MRI
论文作者
论文摘要
蒙版图像建模(MIM)已被证明是一种有效的自学学习(SSL)预训练范式,与变压器体系结构配对并存在大量未标记的自然图像时。在医学成像域中访问和获取大量标记数据的困难以及获得无标记数据的可用性的结合使MIM成为基于3D医学成像数据的进步深度学习(DL)应用的有趣方法。然而,SSL,尤其是使用医学成像数据的MIM应用相当稀缺,仍然存在不确定性。围绕医疗领域中这种学习范式的潜力。我们在前列腺癌(PCA)病变分类的背景下使用T2加权(T2W)轴向磁共振成像(MRI)数据研究MIM。特别是,我们探索在不同条件下与卷积神经网络(CNN)相结合时使用MIM的效果,例如不同的掩盖策略,比ImageNet重量初始化(例如ImageNet重量初始化)在AUC方面获得更好的结果。
Masked Image Modelling (MIM) has been shown to be an efficient self-supervised learning (SSL) pre-training paradigm when paired with transformer architectures and in the presence of a large amount of unlabelled natural images. The combination of the difficulties in accessing and obtaining large amounts of labeled data and the availability of unlabelled data in the medical imaging domain makes MIM an interesting approach to advance deep learning (DL) applications based on 3D medical imaging data. Nevertheless, SSL and, in particular, MIM applications with medical imaging data are rather scarce and there is still uncertainty. around the potential of such a learning paradigm in the medical domain. We study MIM in the context of Prostate Cancer (PCa) lesion classification with T2 weighted (T2w) axial magnetic resonance imaging (MRI) data. In particular, we explore the effect of using MIM when coupled with convolutional neural networks (CNNs) under different conditions such as different masking strategies, obtaining better results in terms of AUC than other pre-training strategies like ImageNet weight initialization.