论文标题
实用的暴露纠正:伟大的真理总是简单的
Practical Exposure Correction: Great Truths Are Always Simple
论文作者
论文摘要
通过纠正暴露水平来提高给定退化的观察的视觉质量是计算机视觉社区的一项基本任务。由于数据驱动的模式(深网)和有限的正则化(传统优化),现有作品通常缺乏对未知场景的适应性,并且通常需要耗时的推断。这两个点严重限制了它们的实用性。在本文中,我们建立了一个实用的暴露校正器(PEC),以组装效率和性能的特征。为了具体,我们重新考虑暴露校正,以提供对暴露敏感补偿的线性解决方案。围绕产生补偿,我们引入了一种曝光对抗功能,作为关键引擎,以完全从观察结果中提取有价值的信息。通过应用定义的函数,我们构建了一个分段的收缩迭代方案来生成所需的补偿。它的收缩性质为算法稳定性和鲁棒性提供了强有力的支持。广泛的实验评估充分揭示了我们提出的PEC的优势。该代码可在https://rsliu.tech/pec上找到。
Improving the visual quality of the given degraded observation by correcting exposure level is a fundamental task in the computer vision community. Existing works commonly lack adaptability towards unknown scenes because of the data-driven patterns (deep networks) and limited regularization (traditional optimization), and they usually need time-consuming inference. These two points heavily limit their practicability. In this paper, we establish a Practical Exposure Corrector (PEC) that assembles the characteristics of efficiency and performance. To be concrete, we rethink the exposure correction to provide a linear solution with exposure-sensitive compensation. Around generating the compensation, we introduce an exposure adversarial function as the key engine to fully extract valuable information from the observation. By applying the defined function, we construct a segmented shrinkage iterative scheme to generate the desired compensation. Its shrinkage nature supplies powerful support for algorithmic stability and robustness. Extensive experimental evaluations fully reveal the superiority of our proposed PEC. The code is available at https://rsliu.tech/PEC.