论文标题
格林的关系和针对人物是徒的转换的单位型号
Green's relations and unit-regularity for semigroup of transformations whose characters are bijective
论文作者
论文摘要
令$ x $为非发行集,$ \ Mathcal {p} = \ {x_i \ colon i \ in I \} $是$ x $的分区。用$ t(x,\ mathcal {p})$表示$ x $的所有转换的半群,保留$ \ nathcal {p} $。在本文中,我们研究了所有转换的Semigroup $ \ Mathcal {b}(x,x,x,\ mathcal {p})$ $ f \ in t(x,x,\ nathcal {p} $ $χ^{(f)} \ colon i \ to i $是$iχ^{(f)} = j $定义的$ f $的字符(map),每当$ x_if \ subseteq x_j $时。我们在$ \ Mathcal {b}(x,x,\ Mathcal {p})$中描述单位定型元素,并确定$ \ MATHCAL {B}(x,x,x,\ MATHCAL {p})$何时是单位规范的SemoGroup。或者,我们可以证明$ \ Mathcal {B}(x,\ Mathcal {p})$是常规的半群。我们描述了格林在$ \ Mathcal {b}(x,x,\ Mathcal {p})$上的关系,并证明$ \ Mathcal {d} = \ Mathcal {J} $ on $ \ MATHCAL {b} $我们还为$ \ Mathcal {d} = \ Mathcal {J} $提供了必要且充分的条件,$ \ Mathcal {b}(x,x,x,\ Mathcal {p})$。我们以猜想结束了论文。
Let $X$ be a nonempty set and $\mathcal{P}=\{X_i\colon i\in I\}$ be a partition of $X$. Denote by $T(X, \mathcal{P})$ the semigroup of all transformations of $X$ that preserve $\mathcal{P}$. In this paper, we study the semigroup $\mathcal{B}(X,\mathcal{P})$ of all transformations $f\in T(X, \mathcal{P})$ such that $χ^{(f)}\in {\rm Sym}(I)$, where ${\rm Sym}(I)$ is the symmetric group on $I$ and $χ^{(f)}\colon I \to I$ is the character (map) of $f$ defined by $iχ^{(f)}=j$ whenever $X_if\subseteq X_j$. We describe unit-regular elements in $\mathcal{B}(X,\mathcal{P})$, and determine when $\mathcal{B}(X,\mathcal{P})$ is a unit-regular semigroup. We alternatively prove that $\mathcal{B}(X,\mathcal{P})$ is a regular semigroup. We describe Green's relations on $\mathcal{B}(X,\mathcal{P})$, and prove that $\mathcal{D} = \mathcal{J}$ on $\mathcal{B}(X,\mathcal{P})$ when $\mathcal{P}$ is finite. We also give a necessary and sufficient condition for $\mathcal{D} = \mathcal{J}$ on $\mathcal{B}(X,\mathcal{P})$. We end the paper with a conjecture.