论文标题

语义通信网络中的联合用户协会和带宽分配

Joint User Association and Bandwidth Allocation in Semantic Communication Networks

论文作者

Xia, Le, Sun, Yao, Niyato, Dusit, Li, Xiaoqian, Imran, Muhammad Ali

论文摘要

语义通信(SEMCOM)最近被认为是一种有希望的解决方案,可确保对未来无线网络的高资源利用和传输可靠性。然而,对背景知识匹配的独特需求使得在支持SEMCOMCOM的网络(SC-NETS)中实现有效的无线资源管理变得具有挑战性。为此,本文从网络的角度研究了SEMCOM,其中SC-NET系统地解决了用户协会(UA)和带宽分配(BA)的两个基本问题。首先,考虑移动用户和相关基站之间的不同知识匹配状态,我们确定了两个通用的SC-NET方案,即基于知识匹配的SC-NET和基于知识匹配的不完美知识的SC-NET。之后,对于每个SC-NET场景,我们从语义信息理论的角度描述了其独特的语义渠道模型,从而开发了比特率到邮件速率转换的概念以及新的语义级指标,即消息中的系统吞吐量(STM),以衡量整体网络性能。然后,我们为每个SC-NET方案制定了UA和BA的联合STM最大化问题,然后提出了相应的最佳解决方案。与两个基准相比,在两种情况下的数值结果都表明我们在STM性能中解决方案的优势和可靠性。

Semantic communication (SemCom) has recently been considered a promising solution to guarantee high resource utilization and transmission reliability for future wireless networks. Nevertheless, the unique demand for background knowledge matching makes it challenging to achieve efficient wireless resource management for multiple users in SemCom-enabled networks (SC-Nets). To this end, this paper investigates SemCom from a networking perspective, where two fundamental problems of user association (UA) and bandwidth allocation (BA) are systematically addressed in the SC-Net. First, considering varying knowledge matching states between mobile users and associated base stations, we identify two general SC-Net scenarios, namely perfect knowledge matching-based SC-Net and imperfect knowledge matching-based SC-Net. Afterward, for each SC-Net scenario, we describe its distinctive semantic channel model from the semantic information theory perspective, whereby a concept of bit-rate-to-message-rate transformation is developed along with a new semantics-level metric, namely system throughput in message (STM), to measure the overall network performance. In this way, we then formulate a joint STM-maximization problem of UA and BA for each SC-Net scenario, followed by a corresponding optimal solution proposed. Numerical results in both scenarios demonstrate significant superiority and reliability of our solutions in the STM performance compared with two benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源