论文标题

图形的多数统治者着色

Majority dominator colorings of graphs

论文作者

Anholcer, Marcin, Emadi, Azam Sadat, Mojdeh, Doost Ali

论文摘要

令$ g $是订单$ n $的简单图表。图$ g $的多数统治者着色是适当的着色,其中图的每个顶点至少占据了一个颜色类别的一半。多数统治者色数$χ_{md}(g)$是$ g $的多数统一符上的最小颜色类数。在本文中,我们研究了图的多数统治者着色的特性。我们从色数,统治者色数,最大程度,统治和独立数来获得紧密的上限和下限。我们还研究了所选图的选定家族的多数统治者着色数量。

Let $G$ be a simple graph of order $n$. A majority dominator coloring of a graph $G$ is proper coloring in which each vertex of the graph dominates at least half of one color class. The majority dominator chromatic number $χ_{md}(G)$ is the minimum number of color classes in a majority dominator coloring of $G$. In this paper we study properties of the majority dominator coloring of a graph. We obtain tight upper and lower bounds in terms of chromatic number, dominator chromatic number, maximum degree, domination and independence number. We also study majority dominator coloring number of selected families of graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源