论文标题

RG从WZW型号流动

RG flows from WZW models

论文作者

Kikuchi, Ken

论文摘要

我们将重归其化组从$ abcde $ type Wess-Zumino-witten模型限制为由伴随初步触发的模型。我们提出阳性拉格朗日耦合会导致无质量的流动和巨大的负数。在保形阶段,我们证明了与半综合条件的接口遵守双重编织关系。区分简单和非简单流动,我们猜想前者满足了半整合条件。如果猜想是正确的,则排除了一些先前允许的无质量流。对于$ a $类型,已知的混合异常固定在Verlinde线的标识中的歧义;识别一个对象的电荷共轭。在大规模的阶段,我们计算基态归化。

We constrain renormalization group flows from $ABCDE$ type Wess-Zumino-Witten models triggered by adjoint primaries. We propose positive Lagrangian coupling leads to massless flow and negative to massive. In the conformal phase, we prove an interface with the half-integral condition obeys the double braiding relations. Distinguishing simple and non-simple flows, we conjecture the former satisfies the half-integral condition. If the conjecture is true, some previously allowed massless flows are ruled out. For $A$ type, known mixed anomalies fix the ambiguity in identifications of Verlinde lines; an object is identified with its charge conjugate. In the massive phase, we compute ground state degeneracies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源