论文标题
密度矩阵作为随机表面理论的时间演变
Time evolution of density matrices as a theory of random surfaces
论文作者
论文摘要
在量子统计的操作配方中,密度矩阵的时间演变受von Neumann方程的控制。在量子力学的相空间公式中,它转化为Moyal方程,后者的形式解决方案由Marinov的路径积分提供。在本文中,我们揭示了马里诺夫路径积分的隐藏特性,表明它描述了相位空间中统治的随机表面的理论。
In the operatorial formulation of quantum statistics, the time evolution of density matrices is governed by von Neumann's equation. Within the phase space formulation of quantum mechanics it translates into Moyal's equation, and a formal solution of the latter is provided by Marinov's path integral. In this paper we uncover a hidden property of the Marinov path integral, demonstrating that it describes a theory of ruled random surfaces in phase space.