论文标题

多视图表示学习的聚类引导的对比度融合

A Clustering-guided Contrastive Fusion for Multi-view Representation Learning

论文作者

Ke, Guanzhou, Chao, Guoqing, Wang, Xiaoli, Xu, Chenyang, Zhu, Yongqi, Yu, Yang

论文摘要

在过去的二十年中,由于从不同领域提取有用的信息以促进多视图应用程序的开发,因此在多视图表示学习领域的进步越来越快。但是,社区面临两个挑战:i)如何从大量未标记的数据到噪声或不完整视图设置中学习强大的表示形式,ii)如何平衡视图一致性和各种下游任务的互补性。为此,我们利用一个深层的融合网络将特定视图的表示融合到视图符号表示形式中,从而提取高级语义来获得可靠的表示。此外,我们采用聚类任务来指导融合网络,以防止其导致琐碎的解决方案。因此,为了平衡一致性和互补性,我们设计了一种不对称的对比策略,该策略使视图符合符号表示形式和每个特定视图的表示。这些模块被纳入一种称为聚类引导的对比融合(Cloven)的统一方法。我们在五个数据集上进行定量和定性评估所提出的方法,表明cloven在聚类和分类中的竞争性多视图学习方法优于11。在不完整的情况下,我们提出的方法比我们的竞争对手更好地抵抗了噪声干扰。此外,可视化分析表明,克罗温可以保留特定视图表示的内在结构,同时还可以改善视图commom表示的紧凑性。我们的源代码将很快在https://github.com/guanzhou-ke/cloven上找到。

The past two decades have seen increasingly rapid advances in the field of multi-view representation learning due to it extracting useful information from diverse domains to facilitate the development of multi-view applications. However, the community faces two challenges: i) how to learn robust representations from a large amount of unlabeled data to against noise or incomplete views setting, and ii) how to balance view consistency and complementary for various downstream tasks. To this end, we utilize a deep fusion network to fuse view-specific representations into the view-common representation, extracting high-level semantics for obtaining robust representation. In addition, we employ a clustering task to guide the fusion network to prevent it from leading to trivial solutions. For balancing consistency and complementary, then, we design an asymmetrical contrastive strategy that aligns the view-common representation and each view-specific representation. These modules are incorporated into a unified method known as CLustering-guided cOntrastiVE fusioN (CLOVEN). We quantitatively and qualitatively evaluate the proposed method on five datasets, demonstrating that CLOVEN outperforms 11 competitive multi-view learning methods in clustering and classification. In the incomplete view scenario, our proposed method resists noise interference better than those of our competitors. Furthermore, the visualization analysis shows that CLOVEN can preserve the intrinsic structure of view-specific representation while also improving the compactness of view-commom representation. Our source code will be available soon at https://github.com/guanzhou-ke/cloven.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源