论文标题

两层神经网络的全球通用性,具有$ k $的线性单元

Global universality of the two-layer neural network with the $k$-rectified linear unit

论文作者

Hatano, N., Ikeda, M., Ishikawa, I., Sawano, Y.

论文摘要

本文涉及两层神经网络的通用性,其$ k $ retectified的线性单位激活功能具有$ k = 1,2,\ ldots $,具有适当的标准,而无需限制域的形状。这种类型的结果称为全球通用性,将先前的结果扩展到本作者的$ k = 1 $。本文介绍了$ k $ -sigmoidal函数,以应用$ k $ retectified的线性单位功能的基本结果。

This paper concerns the universality of the two-layer neural network with the $k$-rectified linear unit activation function with $k=1,2,\ldots$ with a suitable norm without any restriction on the shape of the domain. This type of result is called global universality, which extends the previous result for $k=1$ by the present authors. This paper covers $k$-sigmoidal functions as an application of the fundamental result on $k$-rectified linear unit functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源