论文标题

形状感知的细胞细胞细胞分类

Shape-Aware Fine-Grained Classification of Erythroid Cells

论文作者

Wang, Ye, Ma, Rui, Ma, Xiaoqing, Cui, Honghua, Xiao, Yubin, Wu, Xuan, Zhou, You

论文摘要

细粒度的分类和骨髓红细胞细胞的计数对于评估白血病或血肿的健康状况和制定治疗时间表至关重要。由于不同类型的红细胞细胞之间存在细微的视觉差异,因此将现有的基于图像的深度学习模型应用于细粒细胞细胞分类是一项挑战。此外,红细胞细胞上没有大型开源数据集来支持模型训练。在本文中,我们引入了BMEC(骨变成红细胞细胞),这是第一个大颗粒细胞的细粒细胞数据集,以促进对红细胞细胞的更深入学习研究。 BMEC包含5,666张单个红细胞细胞的图像,每个细胞都从骨髓红细胞细胞涂片中提取,并专业注释到四种类型的红细胞细胞之一。为了区分红细胞细胞,一个关键指标是与细胞生长和成熟密切相关的细胞形状。因此,我们设计了一种新颖的形状感知图像分类网络,用于细粒细胞分类。形状特征是从形状蒙版图像中提取的,并通过形状注意模块汇总到原始图像特征。借助形状摄入的图像功能,我们的网络在BMEC数据集上获得了优越的分类性能(81.12 \%TOP-1精度),并且与基线方法相比。消融研究还证明了将形状信息纳入细粒细胞分类的有效性。为了进一步验证方法的普遍性,我们在两个其他公共白细胞(WBC)数据集上测试了我们的网络,结果表明,我们的形状感知方法通常可以优于最近最新的最新作品,以对WBC进行分类。可以在https://github.com/wangye88899/bmec上找到代码和BMEC数据集。

Fine-grained classification and counting of bone marrow erythroid cells are vital for evaluating the health status and formulating therapeutic schedules for leukemia or hematopathy. Due to the subtle visual differences between different types of erythroid cells, it is challenging to apply existing image-based deep learning models for fine-grained erythroid cell classification. Moreover, there is no large open-source datasets on erythroid cells to support the model training. In this paper, we introduce BMEC (Bone Morrow Erythroid Cells), the first large fine-grained image dataset of erythroid cells, to facilitate more deep learning research on erythroid cells. BMEC contains 5,666 images of individual erythroid cells, each of which is extracted from the bone marrow erythroid cell smears and professionally annotated to one of the four types of erythroid cells. To distinguish the erythroid cells, one key indicator is the cell shape which is closely related to the cell growth and maturation. Therefore, we design a novel shape-aware image classification network for fine-grained erythroid cell classification. The shape feature is extracted from the shape mask image and aggregated to the raw image feature with a shape attention module. With the shape-attended image feature, our network achieved superior classification performance (81.12\% top-1 accuracy) on the BMEC dataset comparing to the baseline methods. Ablation studies also demonstrate the effectiveness of incorporating the shape information for the fine-grained cell classification. To further verify the generalizability of our method, we tested our network on two additional public white blood cells (WBC) datasets and the results show our shape-aware method can generally outperform recent state-of-the-art works on classifying the WBC. The code and BMEC dataset can be found on https://github.com/wangye8899/BMEC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源