论文标题

大型单光子成像

Large-scale single-photon imaging

论文作者

Bian, Liheng, Song, Haoze, Peng, Lintao, Chang, Xuyang, Yang, Xi, Horstmeyer, Roarke, Ye, Lin, Qin, Tong, Zheng, Dezhi, Zhang, Jun

论文摘要

受益于其单光子灵敏度,单光子雪崩二极管(SPAD)阵列已广泛应用于各种领域,例如荧光寿命成像和量子计算。但是,由于复杂的硬件制造工艺和Spad阵列的噪音障碍,大型高保真单光子成像仍然是一个巨大的挑战。在这项工作中,我们将深度学习引入SPAD,从而在数量级上实现了超分辨率的单光子成像,并显着增强了位深度和成像质量。我们首先研究了Spad电子设备的复杂光子流量模型,以准确表征多个物理噪声源,并收集了真实的Spad图像数据集(64 $ \ times $ 32 $ 32像素,90个场景,10个不同的位深度,3个不同的照明磁通,总共2790张图像)以校准噪声模型模型参数。通过这种现实世界的物理噪声模型,我们首次合成了大规模逼真的单光子图像数据集(5种不同分辨率的图像对,具有最大百万像素,17250场景,10个不同的位深度,3个不同的照明透明,总计260万张图像,总计260万张图像)。为了应对具有较低位深度,低分辨率和沉重噪音的SPAD输入的严重超分辨率挑战,我们进一步建立了具有内容自适应的自适应自我注意机制和封闭式融合模块的深度变压器网络,可以挖掘全球上下文功能,以消除多种源噪声并提取全效率细节。我们将该技术应用于一系列实验,包括宏观和微观成像,微流体检查和傅立叶Ptychography。该实验验证了该技术最先进的超分辨率SPAD成像性能,与现有方法相比,PSNR上的优势超过5 dB。

Benefiting from its single-photon sensitivity, single-photon avalanche diode (SPAD) array has been widely applied in various fields such as fluorescence lifetime imaging and quantum computing. However, large-scale high-fidelity single-photon imaging remains a big challenge, due to the complex hardware manufacture craft and heavy noise disturbance of SPAD arrays. In this work, we introduce deep learning into SPAD, enabling super-resolution single-photon imaging over an order of magnitude, with significant enhancement of bit depth and imaging quality. We first studied the complex photon flow model of SPAD electronics to accurately characterize multiple physical noise sources, and collected a real SPAD image dataset (64 $\times$ 32 pixels, 90 scenes, 10 different bit depth, 3 different illumination flux, 2790 images in total) to calibrate noise model parameters. With this real-world physical noise model, we for the first time synthesized a large-scale realistic single-photon image dataset (image pairs of 5 different resolutions with maximum megapixels, 17250 scenes, 10 different bit depth, 3 different illumination flux, 2.6 million images in total) for subsequent network training. To tackle the severe super-resolution challenge of SPAD inputs with low bit depth, low resolution, and heavy noise, we further built a deep transformer network with a content-adaptive self-attention mechanism and gated fusion modules, which can dig global contextual features to remove multi-source noise and extract full-frequency details. We applied the technique on a series of experiments including macroscopic and microscopic imaging, microfluidic inspection, and Fourier ptychography. The experiments validate the technique's state-of-the-art super-resolution SPAD imaging performance, with more than 5 dB superiority on PSNR compared to the existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源