论文标题
多斑点导致脑细菌的大小独立游泳速度
Multiflagellarity leads to the size-independent swimming speed of peritrichous bacteria
论文作者
论文摘要
要在粘性液中游泳,必须通过旋转鞭毛或一束多鞭毛来克服其体内的液体阻力。由于阻力随细菌的大小增加,因此从理论上讲,细菌的游泳速度与其体长成反比。然而,尽管进行了广泛的研究,但鞭毛细菌的基本尺寸速度关系尚不清楚不同的实验报告结果矛盾的结果。在这里,通过严格审查现有的证据并协同我们自己的大型样本大小,流体动力建模和模拟实验,我们证明了\ textit {Escherichia Coli}的平均游泳速度,这是腹膜细菌的主要模型,是腹膜细菌的主要模型。我们的定量分析表明,这种反直觉关系是由身体长度与细菌鞭毛数量之间的线性相关性决定的集体鞭毛动力学的结果。值得注意的是,我们的研究揭示了细菌如何利用越来越多的鞭毛来调节鞭毛运动负荷。多个鞭毛之间的集体负载共享导致每个鞭毛电动机的负载较低,因此鞭毛旋转速度更快,这可以补偿较长的细菌体内较高的流体阻力。没有这种平衡机制,单质细菌的游泳速度通常会随体长的增加而降低,这是一种限制细菌尺寸变化的特征。总的来说,我们的研究解决了关于鞭毛细菌的尺寸速度关系的长期争议,并为细菌中多链球菌的功能益处提供了新的见解。
To swim through a viscous fluid, a flagellated bacterium must overcome the fluid drag on its body by rotating a flagellum or a bundle of multiple flagella. Because the drag increases with the size of bacteria, it is expected theoretically that the swimming speed of a bacterium inversely correlates with its body length. Nevertheless, despite extensive research, the fundamental size-speed relation of flagellated bacteria remains unclear with different experiments reporting conflicting results. Here, by critically reviewing the existing evidence and synergizing our own experiments of large sample sizes, hydrodynamic modeling and simulations, we demonstrate that the average swimming speed of \textit{Escherichia coli}, a premier model of peritrichous bacteria, is independent of their body length. Our quantitative analysis shows that such a counterintuitive relation is the consequence of the collective flagellar dynamics dictated by the linear correlation between the body length and the number of flagella of bacteria. Notably, our study reveals how bacteria utilize the increasing number of flagella to regulate the flagellar motor load. The collective load sharing among multiple flagella results in a lower load on each flagellar motor and therefore faster flagellar rotation, which compensates for the higher fluid drag on the longer bodies of bacteria. Without this balancing mechanism, the swimming speed of monotrichous bacteria generically decreases with increasing body length, a feature limiting the size variation of the bacteria. Altogether, our study resolves a long-standing controversy over the size-speed relation of flagellated bacteria and provides new insights into the functional benefit of multiflagellarity in bacteria.