论文标题

使用分位数条件方差比的对称α稳定分布的稳定性指数的估计

Estimation of stability index for symmetric α-stable distribution using quantile conditional variance ratios

论文作者

Pączek, Kewin, Jelito, Damian, Pitera, Marcin, Wyłomańska, Agnieszka

论文摘要

$α$稳定分布的类别广泛用于各种应用中,尤其是用于建模重尾数据。尽管在实践中已经使用了$α$稳定的分布多年,但仍在完善的识别,测试和估计的新方法,并提出了新的方法。新的统计方法的持续发展与现有算法的低效率有关,尤其是当基础样本较小或基础分布接近高斯时。在本文中,我们提出了一种针对对称$α$稳定分布的样品的新估计算法。提出的方法基于分位数条件方差比。我们研究了提出的估计程序的统计特性,并从经验上表明,我们的方法通常优于其他常用的估计算法。此外,我们表明我们的统计提取物具有独特的样本特征,可以将其与其他方法结合使用,以通过强力方法来完善现有方法。尽管我们的重点设置在对称$α$稳定的情况下,但我们证明了所考虑的统计量对偏度参数变化不敏感,因此我们的方法也可以用于更通用的框架中。为了完整,我们还展示了如何将我们的方法应用于链接到等离子体物理的真实数据。

The class of $α$-stable distributions is widely used in various applications, especially for modelling heavy-tailed data. Although the $α$-stable distributions have been used in practice for many years, new methods for identification, testing, and estimation are still being refined and new approaches are being proposed. The constant development of new statistical methods is related to the low efficiency of existing algorithms, especially when the underlying sample is small or the underlying distribution is close to Gaussian. In this paper we propose a new estimation algorithm for stability index, for samples from the symmetric $α$-stable distribution. The proposed approach is based on quantile conditional variance ratio. We study the statistical properties of the proposed estimation procedure and show empirically that our methodology often outperforms other commonly used estimation algorithms. Moreover, we show that our statistic extracts unique sample characteristics that can be combined with other methods to refine existing methodologies via ensamble methods. Although our focus is set on the symmetric $α$-stable case, we demonstrate that the considered statistic is insensitive to the skewness parameter change, so that our method could be also used in a more generic framework. For completeness, we also show how to apply our method on real data linked to plasma physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源