论文标题
稀疏剪切中的超图中的刺激性复合物随机步行
Sparse Cuts in Hypergraphs from Random Walks on Simplicial Complexes
论文作者
论文摘要
关于将图形和图形分配的光谱理论推广到超图的最新作品。这一目标有两个广泛的方向。一个人将图电导的概念推广到超图电导[LM16,CLTZ18]。在第二种方法中,人们可以将超图视为一种简单的复合物,并研究其各种拓扑特性[LM06,MW09,DKW16,PR17]和光谱特性[KM17,DK17,KO18A,KO18A,KO18B,OPP20]。 在这项工作中,我们试图通过将{\ em上向后步行}的光谱和{\ em交换 - 步行}的光谱与Simplicial Complect上的范围联系起来,从而桥接了这两个研究方向。与图表上的随机步行形成鲜明对比的是,我们表明互换步行的频谱差距和在$ m $ $ m $和$ l $之间的频谱差距,而$ 1 <m \ leq l $不能用于推断HyperGraph电导的任何界限。此外,我们表明,交换行动之间的频谱差距$ x(1)$和$ x(k-1)$不能用于推断HyperGraph电导的任何界限,而对于任何$ l \ leq k $ to to heartergraph Explention,我们给出了cheeger like like like的步行频谱。这是掉期步行和上下步行之间的令人惊讶的区别! 最后,我们还提供了一个结构,以表明在简单络合物中{\ em链接扩展}的精心研究的概念不能以类似于Cheeger的方式来绑定超图扩展。
There are a lot of recent works on generalizing the spectral theory of graphs and graph partitioning to hypergraphs. There have been two broad directions toward this goal. One generalizes the notion of graph conductance to hypergraph conductance [LM16, CLTZ18]. In the second approach one can view a hypergraph as a simplicial complex and study its various topological properties [LM06, MW09, DKW16, PR17] and spectral properties [KM17, DK17, KO18a, KO18b, Opp20]. In this work, we attempt to bridge these two directions of study by relating the spectrum of {\em up-down walks} and {\em swap-walks} on the simplicial complex to hypergraph expansion. In surprising contrast to random-walks on graphs, we show that the spectral gap of swap-walks and up-down walks between level $m$ and $l$ with $1 < m \leq l$ can not be used to infer any bounds on hypergraph conductance. Moreover, we show that the spectral gap of swap-walks between $X(1)$ and $X(k-1)$ can not be used to infer any bounds on hypergraph conductance, whereas we give a Cheeger-like inequality relating the spectral of walks between level $1$ and $l$ for any $l \leq k$ to hypergraph expansion. This is a surprising difference between swaps-walks and up-down walks! Finally, we also give a construction to show that the well-studied notion of {\em link expansion} in simplicial complexes can not be used to bound hypergraph expansion in a Cheeger-like manner.