论文标题

为开放量子系统动力学保留非马克维亚主方程的阳性性:随机Schrödinger方程方法

Positivity Preserving non-Markovian Master Equation for Open Quantum System Dynamics: Stochastic Schrödinger Equation Approach

论文作者

Shi, Wufu, Chen, Yusui, Ding, Quanzhen, Wang, Jin, Yu, Ting

论文摘要

在开放量子系统动力学的确切非马克维亚主方程中,自然可以保证阳性保存。但是,在许多近似的非马克维亚主方程中,不能保证降低密度矩阵的阳性。在本文中,我们提供了由随机Schr Odinger方程(尤其是量子状态 - 状态扩散方程)产生的一般时间分类,扰动和阳性的非马克维亚主方程。我们的方法具有扩展的适用性,可容纳各种非马克维亚环境。我们将三级系统与耗散性骨气环境相结合的三级系统的阳性主方程表示,作为一个特定的例子,以示例我们的一般方法。我们通过分析说明了数值模拟,解释了为什么先前近似的非马克维亚主方程无法保证阳性。我们的工作提供了一个一致的主方程,用于研究超快量子过程和强耦合系统中的非马克维亚动力学。

Positivity preservation is naturally guaranteed in exact non-Markovian master equations for open quantum system dynamics. However, in many approximated non-Markovian master equations, the positivity of the reduced density matrix is not guaranteed. In this paper, we provide a general class of time-local, perturbative and positivity-preserving non-Markovian master equations generated from stochastic Schrodinger equations, particularly quantum-state-diffusion equations. Our method has an expanded range of applicability for accommodating a variety of non-Markovian environments. We show the positivity-preserving master equation for a three-level system coupled to a dissipative bosonic environment as a particular example to exemplify our general approach. We illustrate the numerical simulations with an analysis explaining why the previous approximated non-Markovian master equations cannot guarantee positivity. Our work provides a consistent master equation for studying the non-Markovian dynamics in ultrafast quantum processes and strong-coupling systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源