论文标题

在平面重新定位中,诱导的单激光脉冲磁化逆转基于稀有地的多层

In plane reorientation induced single laser pulse magnetization reversal in rare-earth based multilayer

论文作者

Peng, Y., Salomoni, D., Malinowski, G., Zhang, W., Hohlfeld, J., Buda-Prejbeanu, L. D., Gorchon, J., Vergès, M., Lin, J. X., Sousa, R. C., Prejbeanu, I. L., Mangin, S., Hehn, M.

论文摘要

单脉冲所有光螺旋性独立开关(AO-HIS)表示使用飞秒单激光脉冲逆转纳米结构的磁矩的能力。这是一种不使用任何施加的场而在不使用任何施加场的情况下操纵磁化的超快方法。由于第一个开关实验在GDFECO铁磁系统上进行,因此单脉冲AO HIS已限制了一段时间以GD基于GD的合金或FM是铁磁层的GD/FM BiLayers。直到最近,AO-HIS才扩展到其他一些材料:Mnruga Ferrimagnetic Heusler合金和TB/CO多层具有非常特异性的厚度和组成范围。在这里,我们证明了在结核病/CO中观察到的单个脉冲AO-HIS与基于GD的样品的机制不同,并且可以在大量稀有地球转变金属(RE-TM)多层范围内获得它,从而使这一现象变得更加一般。令人惊讶的是,在这个大型(RE-TM)多层系统中,观察到开关的阈值通量与脉冲持续时间无关,至少至少12 ps。此外,在高激光强度下,诱导同心环结构域结构,揭示了多次通量阈值。这些引人注目的开关特征与GDFECO合金中的AO-HIS相反,与磁化磁化的平面内重新定位的演示相反,该特征朝向固有的预性反相机制。我们的结果允许扩展具有可调磁性特性的各种材料,这些材料可以集成在复杂的异质结构中,并为基于磁性秩序的全光控制提供了为将来应用的工程材料的途径。

Single Pulse All Optical Helicity Independent Switching (AO-HIS) represents the ability to reverse the magnetic moment of a nanostructure using a femtosecond single laser pulse. It is an ultrafast method to manipulate magnetization without the use of any applied field. Since the first switching experiments carried on GdFeCo ferrimagnetic systems, single pulse AO-HIS has been restricted for a while to Gd-based alloys or Gd/FM bilayers where FM is a ferromagnetic layer. Only recently has AO-HIS been extended to a few other materials: MnRuGa ferrimagnetic Heusler alloys and Tb/Co multilayers with a very specific range of thickness and composition. Here, we demonstrate that single pulse AO-HIS observed in Tb/Co results from a different mechanism than the one for Gd based samples and that it can be obtained for a large range of rare earth-transition metal (RE-TM) multilayers, making this phenomenon much more general. Surprisingly, in this large family of (RE-TM) multilayer systems, the threshold fluence for switching is observed to be independent of the pulse duration, up to at least 12 ps. Moreover, at high laser intensities, concentric ring domain structures are induced, unveiling multiple fluence thresholds. These striking switching features, which are in contrast to those of AO-HIS in GdFeCo alloys, concomitant with the demonstration of an in-plane reorientation of the magnetization, point towards an intrinsic precessional reversal mechanism. Our results allow expanding the variety of materials with tunable magnetic properties that can be integrated in complex heterostructures and provide a pathway to engineer materials for future applications based on all-optical control of magnetic order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源