论文标题
在量子蝴蝶前旅行不连续
Traveling discontinuity at the quantum butterfly front
论文作者
论文摘要
我们在超导相变的附近相互作用的电子范式模型的背景下,制定了量子信息的动力学理论。我们仔细得出一组耦合的部分微分方程,这些方程有效地控制了通用维度中信息传播的动力学。他们的解决方案表明,争夺以费米速度设定的最大速度传播。在早期,我们发现以非弹性散射设定的速率呈指数增长。在后期,我们发现争夺受冲击动力学的控制,而行进波在光锥的边界处表现出不连续性。值得注意的是,我们发现解决方案不会在光锥外溢出的完美因果动力学。
We formulate a kinetic theory of quantum information scrambling in the context of a paradigmatic model of interacting electrons in the vicinity of a superconducting phase transition. We carefully derive a set of coupled partial differential equations that effectively govern the dynamics of information spreading in generic dimensions. Their solutions show that scrambling propagates at the maximal speed set by the Fermi velocity. At early times, we find exponential growth at a rate set by the inelastic scattering. At late times, we find that scrambling is governed by shock-wave dynamics with traveling waves exhibiting a discontinuity at the boundary of the light cone. Notably, we find perfectly causal dynamics where the solutions do not spill outside of the light cone.