论文标题
受家庭编号启发的阿贝利安指控
Abelian charge inspired by family number
论文作者
论文摘要
夸克(Quark)的电费$ -1/3 $或$ 2/3 $和BARYON编号$ 1/3 $,其中划分$ 3 $的颜色数量与颜色编号相匹配。尽管电荷和重子数字的性质与颜色充电不同,但匹配对于标准型号或相关的$ b-l $扩展在量子水平上是一致的,因为相关异常$ [su(2)_l] _l] _a^2u(1)_a $ for $ a = y $ a = y $或$ b-b-l $ $ $ $ $ $ $ a。如果基本粒子具有新的$ u(1)$收费与$ a $不同,则不会取消每个家庭的这种异常。但是,如果我们要求所有家庭取消异常,这将颜色编号与家庭数量相关,而不是电荷和巴里昂的数字,有趣的是,家庭编号将我们引导我们进入新颖的$ u(1)$理论。我们将讨论该理论对中微子质量,最近的$ W $ boson质量异常,FCNC和粒子山脉的含义。
Quark has an electric charge either $-1/3$ or $2/3$ and a baryon number $1/3$, where the divisions $3$'s match the color number. Although the electric charge and the baryon number have a nature distinct from the color charge, the matching is necessary for the standard model or a relevant $B-L$ extension consistent at quantum level, since the relevant anomaly $[SU(2)_L]^2U(1)_A$ for $A=Y$ or $B-L$ must vanish. If elementary particles have a new $U(1)$ charge differently from $A$, such anomaly is not cancelled for each family. However, if we demand that the anomaly is cancelled over all families, this relates the color number to the family number instead of the electric charge and baryon number, and interestingly the family number guides us to a novel $U(1)$ theory. We will discuss the implication of this theory for neutrino mass, recent $W$-boson mass anomaly, FCNC, and particle colliders.