论文标题
当$αp=(1-κ)n $时
A new estimate for homogeneous fractional integral operators on the weighted Morrey space $L^{p,κ}$ when $αp=(1-κ)n$
论文作者
论文摘要
对于任何$ 0 <α<n $,均质分数积分运算符$ t_ {ω,α} $由\ begin {equation*} t_ {ω{ω,α} f(x)= \ int = \ int _ { r^n} \ frac {ω(x-y)} {| x-y |^{n-α}} f(y)\,dy。 \ end {qore*}在本文中,我们证明,如果$ω$满足$ \ m athbf {s}^{n-1} $上的某些dini平滑条件,则$ t_ {ω,α} $绑定在$ l^{p,κ}(w^p,w^q)$(w^q)$(w^q)$(量)上, $ \ mathrm {bmo}(\ mathbb r^n)$。
For any $0<α<n$, the homogeneous fractional integral operator $T_{Ω,α}$ is defined by \begin{equation*} T_{Ω,α}f(x)=\int_{\mathbb R^n}\frac{Ω(x-y)}{|x-y|^{n-α}}f(y)\,dy. \end{equation*} In this paper, we prove that if $Ω$ satisfies certain Dini smoothness conditions on $\mathbf{S}^{n-1}$, then $T_{Ω,α}$ is bounded from $L^{p,κ}(w^p,w^q)$ (weighted Morrey space) to $\mathrm{BMO}(\mathbb R^n)$.