论文标题
TypeFormer:移动击键生物识别技术的变压器
TypeFormer: Transformers for Mobile Keystroke Biometrics
论文作者
论文摘要
如今,移动设备的广泛使用,其中包含的信息的敏感性以及当前的移动用户身份验证方法的缺点要求提供新颖,安全和不引人注目的解决方案,以验证用户的身份。在本文中,我们提出了一种新颖的变压器体系结构,以建模在移动设备上执行的自由文本键入动力学,以实现用户身份验证。所提出的模型包括围绕两个长的短期记忆(LSTM)复发层,高斯范围编码(GRE),多头自我注意力发项机制和一个块状结构组成的时间和通道模块。 TypeFormer在迄今为止最大的公共数据库之一的AALTO移动关键数据库中实验,其当前最新系统的当前最新错误率(EER)值仅使用50个键盘的50个注册会话,每次仅3.25%。这样,我们为减少了具有挑战性的移动自由文本方案的传统性能差距,相对于其桌面和固定文本对应。此外,我们通过不同的实验配置(例如击键序列的长度和注册会话的数量)分析模型的行为,显示了使用更多注册数据来改进的余量。最后,进行了交叉数据库评估,证明了与现有方法相比,TypeFormer提取的功能的鲁棒性。
The broad usage of mobile devices nowadays, the sensitiveness of the information contained in them, and the shortcomings of current mobile user authentication methods are calling for novel, secure, and unobtrusive solutions to verify the users' identity. In this article, we propose TypeFormer, a novel Transformer architecture to model free-text keystroke dynamics performed on mobile devices for the purpose of user authentication. The proposed model consists in Temporal and Channel Modules enclosing two Long Short-Term Memory (LSTM) recurrent layers, Gaussian Range Encoding (GRE), a multi-head Self-Attention mechanism, and a Block-Recurrent structure. Experimenting on one of the largest public databases to date, the Aalto mobile keystroke database, TypeFormer outperforms current state-of-the-art systems achieving Equal Error Rate (EER) values of 3.25% using only 5 enrolment sessions of 50 keystrokes each. In such way, we contribute to reducing the traditional performance gap of the challenging mobile free-text scenario with respect to its desktop and fixed-text counterparts. Additionally, we analyse the behaviour of the model with different experimental configurations such as the length of the keystroke sequences and the amount of enrolment sessions, showing margin for improvement with more enrolment data. Finally, a cross-database evaluation is carried out, demonstrating the robustness of the features extracted by TypeFormer in comparison with existing approaches.