论文标题

因子模型的张量PCA

Tensor PCA for Factor Models

论文作者

Babii, Andrii, Ghysels, Eric, Pan, Junsu

论文摘要

现代经验分析通常依赖于具有不可忽略的横截面和时间序列相关性的高维置图数据集。因子模型是自然可以捕获此类依赖性的。张量因子模型将$ d $维的面板描述为降低的等级组件和特质噪声的总和,从而推广了二维面板的传统因子模型。我们考虑了张量因子模型,该模型对应于张量的降低多线性等级的概念。我们表明,对于一个强大的因素模型,一种简单的张量主成分分析算法对于估计因子和负载是最佳的。当因素较弱时,可以通过交替的最小二乘迭代来提高简单TPCA的收敛速率。我们还为因素和负载提供了推理结果,并提出了第一个选择因素数量的测试。新工具应用于在企业特征的多维面板中推出缺失值的问题。

Modern empirical analysis often relies on high-dimensional panel datasets with non-negligible cross-sectional and time-series correlations. Factor models are natural for capturing such dependencies. A tensor factor model describes the $d$-dimensional panel as a sum of a reduced rank component and an idiosyncratic noise, generalizing traditional factor models for two-dimensional panels. We consider a tensor factor model corresponding to the notion of a reduced multilinear rank of a tensor. We show that for a strong factor model, a simple tensor principal component analysis algorithm is optimal for estimating factors and loadings. When the factors are weak, the convergence rate of simple TPCA can be improved with alternating least-squares iterations. We also provide inferential results for factors and loadings and propose the first test to select the number of factors. The new tools are applied to the problem of imputing missing values in a multidimensional panel of firm characteristics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源