论文标题
拉伸图下对称四边形的外部保形模量的渐近型
Asymptotics of the exterior conformal modulus of a symmetric quadrilateral under stretching map
论文作者
论文摘要
在这项工作中,我们研究了对称四边形的外部共形模量的变形,当朝着横坐标轴的方向拉伸,其系数$ h \ to \ infty $。通过使用椭圆形积分理论的一些事实,我们确认该模量的渐近行为不取决于四边形边界的形状。此外,它等效于$(1/π)\ log H $作为$ h \ to \ infty $。
In this work, we study the distortion of the exterior conformal modulus of a symmetric quadrilateral, when stretched in the direction of the abscissa axis with the coefficient $H\to \infty$. By using some facts from the theory of elliptic integrals, we confirm that the asymptotic behavior of this modulus does not depend on the shape of the boundary of the quadrilateral; moreover, it is equivalent to $(1/π)\log H$ as $H\to \infty$.