论文标题

关于理性切结的注释

A note on rationally slice knots

论文作者

Levine, Adam Simon

论文摘要

川奇证明,每个强烈的两极结节$ k \ subset s^3 $都在某些理性同源球$ v_k $中限制了平稳嵌入的磁盘,其构造的先验构造取决于$ k $。我们表明,$ v_k $独立于$ k $,而差异为差异。因此,一个4个manifold以及其连接的总和是所有已知的结的示例,这些示例是理性切片但不切片的。

Kawauchi proved that every strongly negative amphichiral knot $K \subset S^3$ bounds a smoothly embedded disk in some rational homology ball $V_K$, whose construction a priori depends on $K$. We show that $V_K$ is independent of $K$ up to diffeomorphism. Thus, a single 4-manifold, along with connected sums thereof, accounts for all known examples of knots that are rationally slice but not slice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源