论文标题

卫星边缘计算用于实时和非常高的分辨率地球观察

Satellite edge computing for real-time and very-high resolution Earth observation

论文作者

Leyva-Mayorga, Israel, Gost, Marc M., Moretti, Marco, Pérez-Neira, Ana, Vázquez, Miguel Ángel, Popovski, Petar, Soret, Beatriz

论文摘要

实时和高分辨率的地球观测图像,低地球轨道(LEO)卫星捕获了随后传输到地面的图像,以创建感兴趣区域的更新图。这样的地图为气象或环境监测提供了有价值的信息,但也可以用于近时间操作中进行灾难检测,身份证明和管理。但是,这些应用程序生成的数据量很容易超过LEO卫星的通信功能,从而导致拥塞和数据包掉落。为了避免这些问题,可以使用卫星间链接(ISL)在卫星之间分配数据进行处理。在本文中,我们基于一般卫星移动边缘计算(SMEC)框架来解决一个能量最小化问题,以实时和高分辨率的地球观察。我们的结果表明,与直接下载数据相比,数据的最佳分配和压缩参数的选择增加了系统可以支持12倍的图像。此外,在成像火山岛的现实情况下,能节省大于11%,而对图像采集过程的敏感性分析表明,势能节省的高度可以高达92%。

In real-time and high-resolution Earth observation imagery, Low Earth Orbit (LEO) satellites capture images that are subsequently transmitted to ground to create an updated map of an area of interest. Such maps provide valuable information for meteorology or environmental monitoring, but can also be employed in near-real time operation for disaster detection, identification, and management. However, the amount of data generated by these applications can easily exceed the communication capabilities of LEO satellites, leading to congestion and packet dropping. To avoid these problems, the Inter-Satellite Links (ISLs) can be used to distribute the data among the satellites for processing. In this paper, we address an energy minimization problem based on a general satellite mobile edge computing (SMEC) framework for real-time and very-high resolution Earth observation. Our results illustrate that the optimal allocation of data and selection of the compression parameters increase the amount of images that the system can support by a factor of 12 when compared to directly downloading the data. Further, energy savings greater than 11% were observed in a real-life scenario of imaging a volcanic island, while a sensitivity analysis of the image acquisition process demonstrates that potential energy savings can be as high as 92%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源