论文标题

颜色到红外跨模式转移的元学习

Meta-Learning for Color-to-Infrared Cross-Modal Style Transfer

论文作者

Stump, Evelyn A., Luzi, Francesco, Collins, Leslie M., Malof, Jordan M.

论文摘要

红外线图像的最新对象检测模型基于深神网络(DNN),需要大量标记的训练图像。但是,可用于此类培训的公开数据集的规模和多样性受到限制。为了解决这个问题,我们探索跨模式样式转移(CMST)以利用大型多样的颜色图像数据集,以便它们可用于训练基于DNN的IR基于图像的对象探测器。我们在四个公共可用的IR数据集上评估了六种当代风格化方法 - 同类的第一个比较 - 发现CMST对基于DNN的检测器非常有效。令人惊讶的是,我们发现现有的数据驱动方法的表现要胜过简单的灰度风格(平均颜色通道)。我们的分析表明,现有的数据驱动方法要么过于简单,要么将重要的文物引入图像。为了克服这些局限性,我们提出了元学习样式转移(MLST),该样式转移(MLST)通过构成和调整良好的分析功能来学习风格化。我们发现,MLST会导致更复杂的风格化,而无需引入重要的图像伪像,并在我们的基准数据集中实现了最佳的总体检测器性能。

Recent object detection models for infrared (IR) imagery are based upon deep neural networks (DNNs) and require large amounts of labeled training imagery. However, publicly available datasets that can be used for such training are limited in their size and diversity. To address this problem, we explore cross-modal style transfer (CMST) to leverage large and diverse color imagery datasets so that they can be used to train DNN-based IR image-based object detectors. We evaluate six contemporary stylization methods on four publicly-available IR datasets - the first comparison of its kind - and find that CMST is highly effective for DNN-based detectors. Surprisingly, we find that existing data-driven methods are outperformed by a simple grayscale stylization (an average of the color channels). Our analysis reveals that existing data-driven methods are either too simplistic or introduce significant artifacts into the imagery. To overcome these limitations, we propose meta-learning style transfer (MLST), which learns a stylization by composing and tuning well-behaved analytic functions. We find that MLST leads to more complex stylizations without introducing significant image artifacts and achieves the best overall detector performance on our benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源