论文标题
Rédei定理的新证明
A new proof of Rédei's theorem on the number of directions
论文作者
论文摘要
Rédei和Megyesi证明了由$ \ Mathbb {f} _p^2 $的$ p $ element子集确定的方向数是$ 1 $或至少$ \ frac {p+3} {2} $。同样的结果是通过连衣裙Klin和Muzychuk独立获得的。我们使用Kiss和作者证明的引理给我们提供了新的简短证明。有关有限场上多项式的结果的新证明。
Rédei and Megyesi proved that the number of directions determined by a $p$ element subset of $\mathbb{F}_p^2$ is either $1$ or at least $\frac{p+3}{2}$. The same result was independently obtained by Dress, Klin and Muzychuk. We give a new and short proof of this result using a Lemma proved by Kiss and the author. The new proof further on a result on polynomials over finite fields.