论文标题
$ \ Mathcal {a} $ - 谐波近似和部分规律性,重新审视
$\mathcal{A}$-harmonic approximation and partial regularity, revisited
论文作者
论文摘要
我们为准多个积分的局部最小值提供了直接的谐波近似引理,该积分需要其$ \ mathrm {c}^{1,α} $或$ \ mathrm {c}^{c}^{\ infty iffty} $ - 部分规则。与以前的贡献不同,该方法是完全直接和基本的,仅在$ \ mathrm {l}^{p} $ - 强烈椭圆形线性系统和sobolev的嵌入定理的理论上。特别是,不需要较重的工具,例如Lipschitz截断。
We give a direct harmonic approximation lemma for local minima of quasiconvex multiple integrals that entails their $\mathrm{C}^{1,α}$ or $\mathrm{C}^{\infty}$-partial regularity. Different from previous contributions, the method is fully direct and elementary, only hinging on the $\mathrm{L}^{p}$-theory for strongly elliptic linear systems and Sobolev's embedding theorem. Especially, no heavier tools such as Lipschitz truncations are required.