论文标题
JDNN:Jacobi深神经网络解决电报方程
JDNN: Jacobi Deep Neural Network for Solving Telegraph Equation
论文作者
论文摘要
在本文中,已提出了一种名为JDNN的新深度学习体系结构,以近似于部分微分方程(PDE)的数值解决方案。 JDNN能够求解高维方程。在这里,雅各比深神经网络(JDNN)展示了各种类型的电报方程。该模型利用正交雅各比多项式作为激活函数来提高该方法求解偏微分方程的准确性和稳定性。有限的差异时间离散技术用于克服给定方程的计算复杂性。拟议的方案利用图形处理单元(GPU)通过利用神经网络平台来加速学习过程。比较现有方法,数值实验表明,所提出的方法可以有效地学习物理问题的动态。
In this article, a new deep learning architecture, named JDNN, has been proposed to approximate a numerical solution to Partial Differential Equations (PDEs). The JDNN is capable of solving high-dimensional equations. Here, Jacobi Deep Neural Network (JDNN) has demonstrated various types of telegraph equations. This model utilizes the orthogonal Jacobi polynomials as the activation function to increase the accuracy and stability of the method for solving partial differential equations. The finite difference time discretization technique is used to overcome the computational complexity of the given equation. The proposed scheme utilizes a Graphics Processing Unit (GPU) to accelerate the learning process by taking advantage of the neural network platforms. Comparing the existing methods, the numerical experiments show that the proposed approach can efficiently learn the dynamics of the physical problem.