论文标题

通过临时邻居检测复杂分子系统中的动态域和局部波动

Detecting dynamic domains and local fluctuations in complex molecular systems via timelapse neighbors shuffling

论文作者

Crippa, Martina, Cardellini, Annalisa, Caruso, Cristina, Pavan, Giovanni M.

论文摘要

许多复杂的分子系统归功于它们的特性,归功于局部动态重排或波动,尽管机器学习的增加(ML)和复杂的结构描述符,但仍然很难检测到。在这里,我们显示了一个基于新描述符的ML框架,该描述符名为本地环境和邻居改组(镜头),该框架允许识别动态域并通过跟踪各种系统中的局部波动,通过跟踪每个分子单位在邻居个人中随时间变化的周围变化。对镜头时间序列数据的统计分析允许在各种类型的分子系统中盲目检测不同的动态域,例如液体样,固体样或多种动力学,并以有效的方式跟踪其中出现的局部波动。鉴于透镜描述符的抽象定义,该方法是可靠的,多功能的,并且能够阐明各种(不一定是分子)系统的动态复杂性。

Many complex molecular systems owe their properties to local dynamic rearrangements or fluctuations that, despite the rise of machine learning (ML) and sophisticated structural descriptors, remain often difficult to detect. Here we show an ML framework based on a new descriptor, named Local Environments and Neighbors Shuffling (LENS), which allows identifying dynamic domains and detecting local fluctuations in a variety of systems via tracking how much the surrounding of each molecular unit changes over time in terms of neighbor individuals. Statistical analysis of the LENS time-series data allows to blindly detect different dynamic domains within various types of molecular systems with, e.g., liquid-like, solid-like, or diverse dynamics, and to track local fluctuations emerging within them in an efficient way. The approach is found robust, versatile, and, given the abstract definition of the LENS descriptor, capable of shedding light on the dynamic complexity of a variety of (not necessarily molecular) systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源