论文标题

Birkhoff Polytope图的集团和独立集

Cliques and independent sets of the Birkhoff polytope graph

论文作者

Huang, Zejun, Li, Chi-Kwong, Swartz, Eric, Sze, Nung-Sing

论文摘要

Birkhoff Polytope图的顶点集等于$ n $的对称组的元素,如果一个元素等于另一个元素的乘积,则两个元素相邻。研究了Birkhoff Polytope图的最大和最大集团(成对相邻元素的集合)和独立的集合(成对非附有元素的集合)。对于此类集合的不同尺寸,获得了界限。

The Birkhoff polytope graph has a vertex set equal to the elements of the symmetric group of degree $n$, and two elements are adjacent if one element equals the product of the other element with a cycle. Maximal and maximum cliques (sets of pairwise adjacent elements) and independent sets (sets of pairwise nonadjacent elements) of the Birkhoff polytope graph are studied. Bounds are obtained for different sizes of such sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源