论文标题
量子组的Koszul复合物和某个诱导的模块
The Koszul complex and a certain induced module for a quantum group
论文作者
论文摘要
我们为$ $ a $的量子组提供了某个诱导模块的描述。与我们先前的结果一起,这证明了lusztig在de concini-kac类型上的非限制模块的猜想多样性公式量化了$ \ ell $ the unity的$ \ ell $ the的包裹代数,其中$ \ ell $ \ ell $是一个奇怪的integer integer integer integer integer,是一个奇怪的满意$(
We give a description of a certain induced module for a quantum group of type $A$. Together with our previous results this gives a proof of Lusztig's conjectural multiplicity formula for non-restricted modules over the De Concini-Kac type quantized enveloping algebra of type $A_n$ at the $\ell$-th root of unity, where $\ell$ is an odd integer satisfying $(\ell,n+1)=1$ and $\ell> n+1$.