论文标题

klein-gordon奇异波导的积分公式

Integral formulation of Klein-Gordon singular waveguides

论文作者

Bal, Guillaume, Hoskins, Jeremy, Quinn, Solomon, Rachh, Manas

论文摘要

我们考虑对在两个空间维度中分离绝缘阶段的奇异波导的分析。绝缘域是通过沿巨大的schrödinger方程和奇异波导建模的,该波导沿沿分隔绝缘体的一维界面沿着适当的跳跃条件进行建模。我们提出了问题的整体公式,并分析其数学特性。我们还实现了一种快速的多极和扫描的迭代算法来求解积分方程,并以数值证明了该方法的快速收敛性。解决方案和散射效应的几个数值示例说明了我们的理论。

We consider the analysis of singular waveguides separating insulating phases in two-space dimensions. The insulating domains are modeled by a massive Schrödinger equation and the singular waveguide by appropriate jump conditions along the one-dimensional interface separating the insulators. We present an integral formulation of the problem and analyze its mathematical properties. We also implement a fast multipole and sweeping-accelerated iterative algorithm for solving the integral equations, and demonstrate numerically the fast convergence of this method. Several numerical examples of solutions and scattering effects illustrate our theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源