论文标题

基于神经过渡的图书馆折旧解析

Neural Transition-based Parsing of Library Deprecations

论文作者

Babkin, Petr, Navarro, Nacho, Alamir, Salwa, Shah, Sameena

论文摘要

本文解决了自动化代码更新的具有挑战性的问题,可以通过分析其发行说明来修复开源库的弃用API使用情况。我们的系统采用三层体系结构:首先,Web爬网服务从Web中检索折旧文档;然后,专门建造的解析器将这些文本文档处理为树结构化表示。最后,客户端IDE插件在给定代码库中找到并修复了已确定的库库的删除使用情况。特别是本文的重点是解析部分。我们在两个变体中介绍了一种基于过渡的新颖解析器:基于经典特征工程分类器和神经树编码器。为了确认我们方法的有效性,我们收集并标记了来自7个著名的Python数据科学库中的一组426个API折旧,并证明了我们的方法果断地优于非平凡的神经机器翻译基线。

This paper tackles the challenging problem of automating code updates to fix deprecated API usages of open source libraries by analyzing their release notes. Our system employs a three-tier architecture: first, a web crawler service retrieves deprecation documentation from the web; then a specially built parser processes those text documents into tree-structured representations; finally, a client IDE plugin locates and fixes identified deprecated usages of libraries in a given codebase. The focus of this paper in particular is the parsing component. We introduce a novel transition-based parser in two variants: based on a classical feature engineered classifier and a neural tree encoder. To confirm the effectiveness of our method, we gathered and labeled a set of 426 API deprecations from 7 well-known Python data science libraries, and demonstrated our approach decisively outperforms a non-trivial neural machine translation baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源