论文标题
终点稀疏支配乘数转换类别的类别
Endpoint sparse domination for classes of multiplier transformations
论文作者
论文摘要
我们证明了终点结果是翻译不变多尺寸运算符的稀疏支配结果。结果是根据基于自然局部$ m^{p \ to q} $规范的傅立叶乘数的扩张类别来提出的,这些型号表达了适当的终点规律性假设。这些应用程序包括用于经典振荡乘数的新的和最佳的稀疏边界以及径向凸起乘数的多尺度版本。
We prove endpoint results for sparse domination of translation invariant multiscale operators. The results are formulated in terms of dilation invariant classes of Fourier multipliers based on natural localized $M^{p\to q}$ norms which express appropriate endpoint regularity hypotheses. The applications include new and optimal sparse bounds for classical oscillatory multipliers and multi-scale versions of radial bump multipliers.