论文标题
数据驱动的模态分解方法作为流量问题的特征检测技术:批判性评估
Data-driven modal decomposition methods as feature detection techniques for flow problems: a critical assessment
论文作者
论文摘要
模态分解技术显示出其作为数据驱动工具的良好特性的迅速增长。有几种模态分解技术,但是正确的正交分解(POD)和动态模式分解(DMD)被认为是最需要的方法,尤其是在流体动力学领域。在几个领域的各种应用程序上的出色性能之后,已经开发了许多扩展这些技术。在这项工作中,我们提出了一篇雄心勃勃的评论,比较了八种不同的模态分解技术,包括大多数已建立的方法:POD,DMD和快速傅立叶Trasform(FFT),这些经典方法的扩展:基于时间嵌入式系统,Spectral POD(SPOD)和基于较高的DMD DMD(HODMD),基于Scales分离,Multi-Scale POD(Multi Scale pod),Multi scale pod(Multi scale pod),并将其MOPD pod pod pod(M)pod pod pod pod。 (MRDMD),并基于分解运算符的属性,数据驱动的分解分析(RA)。所有这些技术的性能将在三个不同的测试容器上进行评估:圆柱周围的层流唤醒,湍流的射流流量以及瞬态机制周围圆柱体周围的三维唤醒。首先,我们在缩短数据集时显示了八个模态分解技术的性能之间的比较。接下来,将详细说明所有获得的结果,以显示所有调查方法的便利和不便,具体取决于应用类型和最终目标(重建或识别流体物理学)。在这项贡献中,我们旨在对所研究的所有技术进行尽可能公平的比较。据作者所知,这是第一次收集所有这些技术的评论论文,向社区澄清什么是每种应用程序最佳使用的技术。
Modal decomposition techniques are showing a fast growth in popularity for their good properties as data-driven tools. There are several modal decomposition techniques, yet Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) are considered the most demanded methods, especially in the field of fluid dynamics. Following their magnificent performance on various applications in several fields, numerous extensions of these techniques have been developed. In this work we present an ambitious review comparing eight different modal decomposition techniques, including most established methods: POD, DMD and Fast Fourier Trasform (FFT), extensions of these classical methods: based on time embedding systems, Spectral POD (SPOD) and Higher Order DMD (HODMD), based on scales separation, multi-scale POD (mPOD), multi-resolution DMD (mrDMD), and based on the properties of the resolvent operator, the data-driven Resolvent Analysis (RA). The performance of all these techniques will be evaluated on three different testcases: the laminar wake around cylinder, a turbulent jet flow, and the three dimensional wake around cylinder in transient regime. First, we show a comparison between the performance of the eight modal decomposition techniques when the datasets are shortened. Next, all the results obtained will be explained in details, showing both the conveniences and inconveniences of all the methods under investigation depending on the type of application and the final goal (reconstruction or identification of the flow physics). In this contribution we aim on giving a -- as fair as possible -- comparison of all the techniques investigated. To the authors knowledge, this is the first time a review paper gathering all this techniques have been produced, clarifying to the community what is the best technique to use for each application.