论文标题

耗散的广义流体动力方程及其数值溶液

The dissipative Generalized Hydrodynamic equations and their numerical solution

论文作者

Møller, Frederik, Besse, Nicolas, Mazets, Igor E., Stimming, Hans-Peter, Mauser, Norbert J.

论文摘要

“广义流体动力学”(GHD)代表了一个模型,该模型描述了量子物理学中的一维\ textIt {intemable}系统,例如超冷原子或旋转链。在数学上,GHD对应于动力学类型的非线性方程,其中主要未知(统计分布函数$ f(t,z,θ)$)生活在一个相位空间中,该空间由一维位置可变$ z $和一维“ Kinetic” kinetic $θ$,实际上是波浪式的tave-vector所构成的相位空间。 GHD方程的两个关键特征首先是对流术语中的非本地和非线性耦合,其次是无限的一组保守量,这阻止了系统进行热化。为了超越这一点,我们考虑了耗散的GHD方程,这些方程是通过用非本地和非线性扩散算子或Boltzmann-type碰撞积分来补充GHD方程的右侧获得的。在本文中,我们处理新的高级数值方法,以有效地解决这些动力学方程。特别是,我们通过使用高阶时泰勒串联系列扩展来解决对流场的新型落后半拉格朗日方法(所谓的vlasov方程),该方法是通过递归程序获得的,其连续的时间导数是获得的。对流字段的这种高阶时间近似用于设计新的隐式/显式runge-kutta半拉格朗日方法,这些方法与Adams-Moulton Semi-Lagrangian方案进行了比较。为了解决由扩散和碰撞运算符构成的源术语,我们使用并比较文献的不同数值方法。

"Generalized Hydrodynamics" (GHD) stands for a model that describes one-dimensional \textit{integrable} systems in quantum physics, such as ultra-cold atoms or spin chains. Mathematically, GHD corresponds to nonlinear equations of kinetic type, where the main unknown, a statistical distribution function $f(t,z,θ)$, lives in a phase space which is constituted by a one-dimensional position variable $z$, and a one-dimensional "kinetic" variable $θ$, actually a wave-vector, called "rapidity". Two key features of GHD equations are first a non-local and nonlinear coupling in the advection term, and second an infinite set of conserved quantities, which prevent the system from thermalizing. To go beyond this, we consider the dissipative GHD equations, which are obtained by supplementing the right-hand side of the GHD equations with a non-local and nonlinear diffusion operator or a Boltzmann-type collision integral. In this paper, we deal with new high-order numerical methods to efficiently solve these kinetic equations. In particular, we devise novel backward semi-Lagrangian methods for solving the advective part (the so-called Vlasov equation) by using a high-order time-Taylor series expansion for the advection fields, whose successive time derivatives are obtained by a recursive procedure. This high-order temporal approximation of the advection fields are used to design new implicit/explicit Runge-Kutta semi-Lagrangian methods, which are compared to Adams-Moulton semi-Lagrangian schemes. For solving the source terms, constituted by the diffusion and collision operators, we use and compare different numerical methods of the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源