论文标题

部分可观测时空混沌系统的无模型预测

The Effects of Just-in-time Delivery on Social Engagement: A Cluster Analysis

论文作者

Ramírez, Moisés, Ruíz, Raziel, Klarer, Nathan

论文摘要

Fooji Inc.是一个社交媒体参与平台,它创建了一个专有的“正式”交付网络,为社交媒体营销活动的参与者提供奖品。在本文中,我们通过集群分析来证明“即时”交付网络的功效,该集群分析提取并介绍了竞选活动的基本驱动力。 我们利用使用主要组件分析的机器学习方法来组织这些主要组件的FOOJI活动。在主要组件空间中的数据布置使我们能够使用$ k $ -MEANS聚类技术公开潜在的趋势。这些趋势中最重要的是展示“即时”交付网络如何改善社交媒体的参与度。

Fooji Inc. is a social media engagement platform that has created a proprietary "Just-in-time" delivery network to provide prizes to social media marketing campaign participants in real-time. In this paper, we prove the efficacy of the "Just-in-time" delivery network through a cluster analysis that extracts and presents the underlying drivers of campaign engagement. We utilize a machine learning methodology with a principal component analysis to organize Fooji campaigns across these principal components. The arrangement of data across the principal component space allows us to expose underlying trends using a $K$-means clustering technique. The most important of these trends is the demonstration of how the "Just-in-time" delivery network improves social media engagement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源