论文标题

在线性直径上完美的Lee代码,直径6

On linear diameter perfect Lee codes with diameter 6

论文作者

Zhang, Tao, Ge, Gennian

论文摘要

1968年,Golomb and Welch猜想没有完美的Lee代码,带有Radius $ r \ ge2 $和Dimension $ n \ ge3 $。直径完美代码是完美代码的自然概括。 2011年,Etzion(IEEETrans。Inform。理论,57(11):7473---7481,2011)提出了以下问题:除了$ DPL(3,6)$代码外,直径的直径完美的Lee(DPL,简称为简短)大于四个的代码?后来,Horak和Albdaiwi(IEEETrans。Inform。Theroment,58(8):5490--5499,2012)猜想,没有$ dpl(n,d)$ dimension $ n \ ge3 $ and diameter $ diameter $ d> 4 $($(n,d)=(n,d)=(d)=(3,6,6)$。在本文中,我们对此猜想进行反例。此外,我们证明,对于$ n \ ge3 $,当且仅当$ n = 3,11 $时,有一个线性$ dpl(n,6)$代码。

In 1968, Golomb and Welch conjectured that there is no perfect Lee codes with radius $r\ge2$ and dimension $n\ge3$. A diameter perfect code is a natural generalization of the perfect code. In 2011, Etzion (IEEE Trans. Inform. Theory, 57(11): 7473--7481, 2011) proposed the following problem: Are there diameter perfect Lee (DPL, for short) codes with diameter greater than four besides the $DPL(3,6)$ code? Later, Horak and AlBdaiwi (IEEE Trans. Inform. Theory, 58(8): 5490--5499, 2012) conjectured that there are no $DPL(n,d)$ codes for dimension $n\ge3$ and diameter $d>4$ except for $(n,d)=(3,6)$. In this paper, we give a counterexample to this conjecture. Moreover, we prove that for $n\ge3$, there is a linear $DPL(n,6)$ code if and only if $n=3,11$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源