论文标题

Entoboost:在现实结肠镜检查中计算机辅助息肉检测过程中的伪造抑制的插件模块(带有数据集)

EndoBoost: a plug-and-play module for false positive suppression during computer-aided polyp detection in real-world colonoscopy (with dataset)

论文作者

Wang, Haoran, Zhu, Yan, Qin, Wenzheng, Zhang, Yizhe, Zhou, Pinghong, Li, Quanlin, Wang, Shuo, Song, Zhijian

论文摘要

使用深度学习的计算机辅助检测系统的发展为内窥镜图像分析打开了新的范围。但是,在封闭数据集上开发的基于学习的模型容易受到复杂临床环境中未知异常的影响。特别是,息肉检测的高假阳性率仍然是临床实践中的主要挑战。在这项工作中,我们发布了FPPD-13数据集,该数据集提供了在现实结肠镜检查中计算机辅助息肉检测过程中典型误报的分类法和现实情况。我们进一步提出了一个事后模块内变量,可以将其插入通用的息肉检测模型中,以滤除假阳性预测。这是通过对息肉歧管的生成学习来实现的,并通过密度估计来拒绝假阳性。与监督分类相比,这种异常检测范式在开放世界中实现了更好的数据效率和鲁棒性。广泛的实验表明,回顾性验证和前瞻性验证中都有有希望的假阳性抑制作用。此外,已发布的数据集可用于对已建立的检测系统执行“压力”测试,并鼓励对可靠和可靠的计算机辅助内窥镜图像分析进行进一步的研究。该数据集和代码将在http://endoboost.miccai.cloud上公开获得。

The advance of computer-aided detection systems using deep learning opened a new scope in endoscopic image analysis. However, the learning-based models developed on closed datasets are susceptible to unknown anomalies in complex clinical environments. In particular, the high false positive rate of polyp detection remains a major challenge in clinical practice. In this work, we release the FPPD-13 dataset, which provides a taxonomy and real-world cases of typical false positives during computer-aided polyp detection in real-world colonoscopy. We further propose a post-hoc module EndoBoost, which can be plugged into generic polyp detection models to filter out false positive predictions. This is realized by generative learning of the polyp manifold with normalizing flows and rejecting false positives through density estimation. Compared to supervised classification, this anomaly detection paradigm achieves better data efficiency and robustness in open-world settings. Extensive experiments demonstrate a promising false positive suppression in both retrospective and prospective validation. In addition, the released dataset can be used to perform 'stress' tests on established detection systems and encourages further research toward robust and reliable computer-aided endoscopic image analysis. The dataset and code will be publicly available at http://endoboost.miccai.cloud.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源